On Nonlinear Boundary Value Problems for Functional Difference Equations with p-Laplacian

نویسندگان

  • Yong Wan
  • Yuji Liu
  • Yong Zhou
چکیده

The existence of solutions of boundary value problems for finite difference equations were studied by many authors, one may see the text books 1, 2 , the papers 3–5 and the references therein. We present some representative ones, which are the motivations of this paper. In papers 3, 4 , using Krasnoselskii fixed point theorem and Leggett-Williams fixed point theorem, respectively, Karakostas studied the existence of three positive solutions of the problems consisting of the functional differential equation

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of Positive Solutions for Boundary Value Problems of Nonlinear Functional Difference Equation with p-Laplacian Operator

In recent years, boundary value problems of differential and difference equations have been studied widely and there are many excellent results (see Erbe and Wang [1], Grimm and Schmitt [2], Gustafson and Schmitt [3], Weng and Jiang [4], Weng and Tian [5], Wong [6], and Yang et al. [7]). Weng and Guo [8] considered two-point boundary value problem of a nonlinear functional difference equation w...

متن کامل

Triple positive solutions of $m$-point boundary value problem on time scales with $p$-Laplacian

‎In this paper‎, ‎we consider the multipoint boundary value problem for one-dimensional $p$-Laplacian‎ ‎dynamic equation on time scales‎. ‎We prove the existence at least three positive solutions of the boundary‎ ‎value problem by using the Avery and Peterson fixed point theorem‎. ‎The interesting point is that the non-linear term $f$ involves a first-order derivative explicitly‎. ‎Our results ...

متن کامل

Existence and uniqueness of solutions for p-laplacian fractional order boundary value problems

In this paper, we study sufficient conditions for existence and uniqueness of solutions of three point boundary vale problem for p-Laplacian fractional order differential equations. We use Schauder's fixed point theorem for existence of solutions and concavity of the operator for uniqueness of solution. We include some examples to show the applicability of our results.

متن کامل

Positive solutions for nonlinear systems of third-order generalized sturm-liouville boundary value problems with $(p_1,p_2,ldots,p_n)$-laplacian

In this work, byemploying the Leggett-Williams fixed point theorem, we study theexistence of at least three positive solutions of boundary valueproblems for system of third-order ordinary differential equationswith $(p_1,p_2,ldots,p_n)$-Laplacianbegin{eqnarray*}left { begin{array}{ll} (phi_{p_i}(u_i''(t)))'  +  a_i(t) f_i(t,u_1(t), u_2(t), ldots, u_n(t)) =0 hspace{1cm} 0  leq t leq 1, alpha_i u...

متن کامل

Existence of Solutions for Nonlinear Four-Point p-Laplacian Boundary Value Problems on Time Scales

Let T be any time scale such that 0, 1 be subset of T. The concept of dynamic equations on time scales can build bridges between differential and difference equations. This concept not only gives us unified approach to study the boundary value problems on discrete intervals with uniform step size and real intervals but also gives an extended approach to study on discrete case with non uniform s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010